Curriculum Content Map Subject: Physics Year group: 10 | | TER | M 1 | TERN | 12 | TERM 3 | |--------------------------|--|---|--|--|--| | Unit title & description | Motion; Forces and Motion | Conservation of Energy | Waves; Light and the
Electromagnetic Spectrum | Radioactivity | Energy – Forces Doing Work; Forces and their effects | | Knowledge | Vectors and Scalars Distance/time graphs Acceleration Velocity/time graphs Resultant Forces Newton's Laws Momentum Stopping Distances Crash hazards Braking Distance and Energy | Energy Stores and transfers Energy Efficiency Keeping Warm Stored Energies Non-renewable resources Renewable resources | Describing Waves Wave Speed Investigating Waves Refraction- investigating refraction Electromagnetic waves and their uses EM Radiation dangers Waves crossing boundaries Ears and Hearing Ultrasound and infrasound Ray Diagrams Colour Lenses Radiation and Temperature | Atomic Models Inside atoms Electrons and Orbits Background radiation Types of Radiation Radioactive Decay Half-Life Dangers of Radioactivity Using Radioactivity Radioactivity in Medicine Nuclear Energy Nuclear Fission Nuclear Fusion | Work and Power Objects Affecting Each Other Vector Diagrams Rotational Forces | | Skills | Core practical – planning and analysing results, using equipment Interpreting force diagrams Applying knowledge to real-world contexts Evaluating use of safety features and speed limits | Interpreting Sankey diagrams Applying knowledge to real-world contexts Evaluating and debating energy resources, and evaluating efficiency of devices, using evidence | Core practical – planning and analysing results, using equipment Interpreting ray diagrams Applying knowledge to real-world contexts Evaluating uses and dangers of radiation | Applying knowledge to
real-world contexts Evaluating uses and
dangers of radiation Interpreting decay
equations and half-life
graphs | Core practical – planning and analysing results, using equipment Interpreting force and vector diagrams Applying knowledge to real world contexts Analysing moments and gear interactions | | Literacy | Key vocabulary Extended answer questions relating to forces and momentum | Key vocabulary Extended answer questions relating to energy resources/transfers | Key vocabulary Extended answer questions relating to electromagnetic spectrum and the greenhouse effect | Key vocabulary Extended answer questions relating to uses and dangers of nuclear radiation, Rutherford's alpha scattering experiment and nuclear fusion and fission | Key vocabulary Extended answer questions relating to forces and interactions | | Numeracy X ÷ | Calculations Drawing and interpreting
graphs and vector
diagrams to scale, with
angles | Calculations Drawing and interpreting
Sankey diagrams to scale | CalculationsUsing units and prefixes | Interpreting half-life graphs and calculating half-lives. Averaging count rates Calculating atomic number and mass in decay equations | • Equations: $E = Fx$, $P = \frac{E}{t}$, $M = Fd$ (Work done, mechanical power, moments). Gear ratios, scale diagrams, Pythagoras' theorem in resolving scale vector diagrams | | Enrichment
Learning | Lots of practical opportunities, which includes working in groups Regenerative breaking in eco-friendly cars – wider applications Possibility of investigation | Lots of practical opportunities, which includes working in groups Possibility of investigation or project work into insulation/pendulums/fuel s | Lots of practical opportunities, which includes working in groups Possibility of investigation or project work into radiation/optical fibres /SONAR/RADAR/lenses | Lots of practical opportunities, which includes working in groups History of Science – how ideas about the atom have changed over time Analysing environmental | Lots of practical opportunities, which includes working in groups Direct applications to students – gear ratios in bike and car gears, Possibility of investigation or project work into forces/work done/power/vector diagrams in real life situations (such as aircraft, boats, etc)/moments – levers etc. | | | or project work into
forces/momentum
/crashes/speed | | | impact and benefits of nuclear radiation Possibility of investigation or project work into uses and dangers of nuclear radiation/models of the atom/cancer detection and treatment/benefits of fission and fusion/economics of | | |-------------------------------|--|--|--|---|--| | British values | Laws around speed limits
and safety features Respectful group work | Discussion of Paris Climate Agreement and G20 meetings Respectful group work | Discussion of international security/use of technology in defence Respectful group work | fusion Discussion of international security/terrorism/nuclear accidents Ethics of nuclear power Respectful group work Health and Safety – dangers of nuclear radiation, effects of fusion and fission including nuclear waste | Respectful group work | | Personal
Development | Redrafting extended answers –resilience Working in groups – confidence Homework and projects – independence | Redrafting extended answers –resilience Working in groups and debating – confidence Homework and projects – independence | Redrafting extended answers –resilience Working in groups – confidence Homework and projects – independence | Redrafting extended answers –resilience Working in groups – confidence Homework and projects – independence Self-management and self-development through independent use of revision techniques which have been modelled in class | Redrafting extended answers –resilience Working in groups – confidence Homework and projects – independence Self-management and self-development through independent use of revision techniques which have been modelled in class | | Careers | In engineering, safety, sports analyst/coaching | In energy, fuels, renewable technologies | In optics, radiography, audiology, optometry, engineering | Nuclear industry in the UK and abroad Health and safety inspector Emergency services | Engineering, sports | | Assessment opportunities | Assessed through CPAC, Homework, AP points End of Topic mini-tests AfL in lessons DO now activities that assess knowledge recall Extended writing DIRT tasks | Assessed through CPAC, Homework, AP points End of Topic mini-tests AfL in lessons DO now activities that assess knowledge recall Extended writing DIRT tasks | Assessed through CPAC, Homework, AP points End of Topic mini-tests AfL in lessons DO now activities that assess knowledge recall Extended writing DIRT tasks | AP points End of Topic Tests Practical Assessment Mini-knowledge tests AfL in lessons DO now activities that assess knowledge recall Extended writing DIRT tasks | AP points End of Topic Tests Practical Assessment Mini-knowledge tests AfL in lessons DO now activities that assess knowledge recall Extended writing DIRT tasks | | Differentiation for MA and LA | Individual DIRT tasks using 0 A01 type questions for LA A03 type questions for MA In class support for LA students | d for students when books are marke
GAP analysis
ents by using TAs or City years
differentiated questions for the class | d. | | | ## **Bold denotes triple science only topics** | Text in red is contact that should be re | evisited from KS3 | rather than entirely new | |--|-------------------|--------------------------| |--|-------------------|--------------------------|